Additives for Putties
Additives for Putties

Putties based on polyester and epoxy resins are widely used all around the world. There are many different kinds of putty, such as common car repair putty, reinforced putty, spray putty and casting putties. Other putties may be used to repair marine components such as yachts or improve the finish of stone or concrete surfaces. The wide range of putties also leads to different requirements concerning properties and quality of the material. But most types of putties have basic requirements in common, such as:

Proper Application Consistency
The compound is usually applied with a putty knife. In order for the putty to be distributed quickly and evenly on a surface, it must have a special, smooth texture that is sometimes referred to as butter-like consistency. This consistency is what facilitates a uniform surface without craters and holes.

Besides the filler, wetting and dispersing additives and thixotropic agents have a strong influence on this viscosity.

Preferred choice of:
- Wetting and dispersing additives for UP and EP: **BYK-W 966**, **BYK-W 980**
- Rheology additives for UP: **TIXOGEL-MPZ**, **TIXOGEL-VZ**, **GARAMITE-1958**, **RHEOBYK-100** and **RHEOBYK-7590**
- Rheology additives for EP: **GARAMITE-7305** in combination with **RHEOBYK-R 607**

Fast Curing and Easy Sanding
After curing, the putty is sanded. This can be done manually or with a grinding machine. Dry grinding is more common, but wet grinding is also possible under conditions where the water will evaporate fast enough. To minimize labor time, curing should be short and grinding should be as easy as possible.

Preferred choice for
- UP resins: **BYK-W 966**, **BYK-W 969**, **BYK-W 980**
- EP resins: **BYK-9076**, **BYK-W 969**, **BYK-W 980**

Adhesion to Substrate
One of the most important properties of a putty is excellent adhesion to the substrate. Putties must still adhere perfectly, even when exposed to elevated temperatures to smooth substrates such as steel. In contrast to some other products on the market, BYK additives are designed to have no negative impact on the adhesion of the putty to the surface.

Preferred choice for
- UP resins: **BYK-W 966**, **BYK-W 980**
- EP resins: **BYK-W 940**, **ANTI-TERRA-204**

Good Storage Stability
Storage stability of the putty itself ultimately has to match the operator's expectations. This means that the putty should not cure during storage before it can even be used, and the resin should not separate out on top of the compound (requiring it to be remixed before use).

Preferred choice for
- UP resins: **BYK-W 966**, **BYK-W 980**
- EP resins: **BYK-W 940**, **ANTI-TERRA-204**

Air Entrapments
Many air bubbles are incorporated into the compound while the putty is being mixed. A vacuum is often used to reduce the amount of entrapped air. Air release additives will help to reduce the incorporation of air during mixing and minimize the time for the vacuum treatment.

Preferred choice for
- UP resins: **BYK-A 515**, **BYK-A 555**

None of the recommended wetting and dispersing additives reduce adhesion.
Polyester Putties

Most putties are based on unsaturated polyester resins as they combine the required properties with economically favorable costs. From an additive perspective, the main focus in putties is on wetting and dispersing additives. These additives absorb onto the filler surface and minimize the interaction between the polar filler particles. This process reduces viscosity and provides an opportunity to increase filler load. Increasing the filler load in the formulation produces a putty with reduced abrasion resistance, which means better sandability. At the same time, these additives also make it easier to incorporate the filler into the resin and shorten the production time.

Effect of Wetting and Dispersing Additives

Putty without Additive
Strong interaction between filler particles:
- Difficult filler incorporation
- High viscosity
- Poor sandability
- Resin separation during storage

Putty with BYK-W 969
Filler particles are covered with a layer of monofunctional additive:
- Easy filler incorporation
- Much lower viscosity
- 12% higher filler load
- Very good sandability
 (not recommended for cobalt-accelerated systems)

Putty with BYK-W 966 or BYK-W 980
Filler particles are covered with a layer of bifunctional additive:
- Easy filler incorporation
- Lower viscosity
- 6% higher filler load
- Improved sandability
- No resin separation during storage

Typical Starting Formulation of a Polyester-based Putty

<table>
<thead>
<tr>
<th>Component</th>
<th>Amount in g</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>UP resin</td>
<td>100</td>
<td>Resin</td>
</tr>
<tr>
<td>BYK-W 966</td>
<td>2</td>
<td>Wetting and dispersing additive</td>
</tr>
<tr>
<td>RHEOBYK-100</td>
<td>1</td>
<td>Castor derived thixotrope</td>
</tr>
<tr>
<td>TIXOGEL-VZ</td>
<td>3</td>
<td>Organoclay-based thixotrope</td>
</tr>
<tr>
<td>Talc 1 (20 µm)</td>
<td>70</td>
<td>Filler</td>
</tr>
<tr>
<td>Talc 2 (30 µm)</td>
<td>70</td>
<td>Filler</td>
</tr>
<tr>
<td>Calcium carbonate (10 µm)</td>
<td>65</td>
<td>Filler</td>
</tr>
<tr>
<td>Titanium dioxide</td>
<td>5</td>
<td>Pigment</td>
</tr>
</tbody>
</table>
Additives for Polyester Putties

<table>
<thead>
<tr>
<th>Recommended Product</th>
<th>Product Type</th>
<th>Remarks</th>
<th>Dosage</th>
</tr>
</thead>
<tbody>
<tr>
<td>BYK-A 555</td>
<td>Strong defoamer for any kind of putty where low amount of entrapped air is required or time for vacuum deaeration should be as short as possible</td>
<td>Universal air release additive</td>
<td>0.2–1 % based on resin</td>
</tr>
<tr>
<td>BYK-W 966</td>
<td>Bifunctional wetting and dispersing additive with anti-separation properties (up to 5% more filler possible)</td>
<td>Good cost/performance ratio</td>
<td>0.5–1.5 % based on filler</td>
</tr>
<tr>
<td>BYK-W 969</td>
<td>Monofunctional wetting and dispersing additive with strongest performance concerning increase of filler load (12% more filler possible)</td>
<td>Not recommended for cobalt-accelerated systems</td>
<td>0.5–1.5 % based on filler</td>
</tr>
<tr>
<td>BYK-W 980</td>
<td>Strong bifunctional wetting and dispersing additive with anti-separation properties (up to 6% more filler possible)</td>
<td>High content of active material</td>
<td>0.5–1.5 % based on filler</td>
</tr>
<tr>
<td>GARAMITE-1958</td>
<td>Solid thixotrope based on Mixed Mineral Technology (MMT)</td>
<td>No impact on adhesion, does not require high shear forces during incorporation</td>
<td>1–5 % based on resin</td>
</tr>
<tr>
<td>RHEOBYK-100</td>
<td>Castor derived thixotrope</td>
<td>Activation required at 45–55 °C</td>
<td>0.5–1.5 % based on resin</td>
</tr>
<tr>
<td>RHEOBYK-7590</td>
<td>Castor derived thixotrope</td>
<td>Activation required at 45–50 °C</td>
<td>0.5–1.5 % based on resin</td>
</tr>
<tr>
<td>TIXOGEL-MPZ</td>
<td>Solid thixotrope, maximum performance organophilic bentonite</td>
<td>No impact on adhesion</td>
<td>1–5 % based on resin</td>
</tr>
<tr>
<td>TIXOGEL-VZ</td>
<td>Solid thixotrope, organophilic bentonite</td>
<td>No impact on adhesion</td>
<td>1–5 % based on resin</td>
</tr>
</tbody>
</table>

Selecting a Wetting and Dispersing Additive for Polyester Putty

![Flowchart](image-url)

figure 3

figure 4
Putties Based on Epoxy Resin

Whenever UP resin characteristics such as mechanical or chemical properties are not sufficient, epoxy resins are the preferred choice for producing an appropriate putty. The basic requirements are very similar to UP putty, but the type of suitable products does differ from polyester putty.

Additives for Epoxy Putties

<table>
<thead>
<tr>
<th>Recommended Product</th>
<th>Product Type</th>
<th>Remarks</th>
<th>Dosage</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTI-TERRA-204</td>
<td>Multifunctional wetting and dispersing additives with strong anti-sedimentation properties</td>
<td>Usually no viscosity reduction</td>
<td>0.5–1.5 % based on filler</td>
</tr>
<tr>
<td>BYK-9076</td>
<td>Monofunctional wetting and dispersing additives with strong performance concerning increase of filler load</td>
<td>Very strong performance</td>
<td>0.5–1.5 % based on filler</td>
</tr>
<tr>
<td>BYK-A 501</td>
<td>Polymeric defoamer for epoxy systems</td>
<td>Alternative to BYK-A 530</td>
<td>0.2–1 % based on resin</td>
</tr>
<tr>
<td>BYK-A 530</td>
<td>Strong universal defoamer for epoxy systems</td>
<td>Best performance in most epoxy systems</td>
<td>0.2–1 % based on resin</td>
</tr>
<tr>
<td>BYK-W 940</td>
<td>Multifunctional wetting and dispersing additives with strong anti-sedimentation properties</td>
<td>Usually no viscosity reduction</td>
<td>0.5–1.5 % based on filler</td>
</tr>
<tr>
<td>BYK-W 966</td>
<td>Bifunctional wetting and dispersing additive with anti-separation properties. Filler increase possible.</td>
<td>Good cost/ performance ratio</td>
<td>0.5–1.5 % based on filler</td>
</tr>
<tr>
<td>BYK-W 980</td>
<td>Strong bifunctional wetting and dispersing additive with anti-separation properties. Filler increase possible.</td>
<td>High content of active material</td>
<td>0.5–1.5 % based on filler</td>
</tr>
<tr>
<td>BYK-W 985</td>
<td>Monofunctional wetting and dispersing additives with strong performance concerning increase of filler load</td>
<td>Very strong performance</td>
<td>0.5–1.5 % based on filler</td>
</tr>
<tr>
<td>GARAMITE-7305</td>
<td>Solid thixotrope based on Mixed Mineral Technology (MMT)</td>
<td>No impact on adhesion</td>
<td>1–5 % based on resin</td>
</tr>
<tr>
<td>RHEOBYK-R 607</td>
<td>Thixotropic booster in conjunction with hydrophilic fumed silica or clay based additives</td>
<td>To be used in the hardener</td>
<td>20–80 % based on thixotropic agent, depending on the hardener</td>
</tr>
</tbody>
</table>
For more information about our additives and instruments, as well as our additive sample orders please visit:

www.byk.com

Additives:

BYK-Chemie GmbH
P.O. Box 100245
46462 Wesel
Germany
Tel +49 281 670-0
Fax +49 281 65735
info@byk.com

Instruments:

BYK-Gardner GmbH
P.O. Box 970
82534 Geretsried
Germany
Tel +49 8171 3493-0
Fax +49 8171 3493-140
info.byk.gardner@altana.com

ACTAL®, ADD-MAX®, ADD-VANCE®, ADJUST®, ADVITROL®, ANTI-TERRA®, AQUACER®, AQUAMAT®, AQUATIK®, BENTOLIT®, BYK®, BYK®-DYNWET®, BYK®-SILCLEAN®, BYKANOL®, BYKETOL®, BYKET®, BYKQ2BLOCK®, BYKOPLAST®, BYKUMEN®, CARBOBYK®, CERACOL®, CERAFAK®, CERAFLOUR®, CERAMAT®, CERATIX®, CLAYTONE®, CLOISITE®, DISPERBYK®, DISPERPLAST®, FULACOLOR®, FULCAT®, GARAMITE®, GELWHITE®, HORDAMER®, LACTIMON®, LAPONITE®, MINERAL COLLOID®, MINERPOL®, NANOBYK®, OPTIBENT®, OPTIFLO®, OPTIGEL®, PAPERBYK®, PERMONT®, POLYAD®, PRIEX®, PURE THIX®, RECYCLOBLEND®, RECYCLOSORB®, RECYCLOSTAB®, Rheobyk®, Rheocin®, Rheotix®, Scona®, Silbyk®, Tixogel®, ViscoByk® and Y 25® are registered trademarks of the BYK group.

The information herein is based on our present knowledge and experience. The information merely describes the properties of our products but no guarantee of properties in the legal sense shall be implied. We recommend testing our products as to their suitability for your envisaged purpose prior to use. No warranties of any kind, either express or implied, including warranties of merchantability or fitness for a particular purpose, are made regarding any products mentioned herein and data or information set forth, or that such products, data or information may be used without infringing intellectual property rights of third parties. We reserve the right to make any changes according to technological progress or further developments.

This issue replaces all previous versions – Printed in Germany