Defoamer

Mark Heekeren, Lab Manager Technical Service Automotive Coatings
Wesel, 12. August 2015
Content

- What is foam – foam stabilization
- Mode of action of defoamers
- Defoamer classes
- Defoamer test methods
Effect of Foam / Air

- Poor visual appearance
- Long production time (e.g. filling of drums)
- Decreased water resistance
- Poor application properties

Defoamers are used, in order to avoid it!!!
Types of Foam –
Foam is an emulsion of a gas in a liquid

- Wet Foam
- Dry Foam
- Microfoam (10 µm - 70µm)
- Macrofoam (>100 µm)
Causes for Foam

- Adsorbed air (pigments, extenders)
- Reaction bubbles (e.g., carbon dioxide in PU systems)
- Incorporated air (production, application)
- Air from the substrate (wood, concrete, ...)

7/20/2015, Page 5, Defoamer
Bubbles Break at Surface*

Lamella = double wall interface

Drainage effect

Pure liquids do not foam!
Foam Stabilization

- Hydrophobic non-polar
- Hydrophilic polar

Surfactant
Mechanisms of Foam Stabilization:

- Gibbs-Marangoni-Effect
- Formation of electrostatic/steric repulsing double layers
- Gasdiffusion
- Foam stabilization through solid particles
- Influence of viscosity
Gibbs-Marangoni-Effect (elasticity)

\[\gamma + \Delta \gamma \]

\[\gamma \]

\[\gamma - \Delta \gamma \]

Transport of surfactant/water mixtures in the direction of the arrows shown

Higher elastic behavior is stronger foam stabilization
Electrostatic Repulsion

>10 nm
Gasdiffusion

The size of neighbouring foam bubbles differs:

- Inner pressure in small bubbles is higher then in large bubbles
- Under high pressure more gas is dissolved as under low pressure

Gas diffusion: large bubbles grow at the expense of small bubbles

 Gas diffusion can stop because of saturation of the interface with surfactant molecules

Air and CO$_2$ dissolve better into the liquid phase then nitrogen
Bubbles Rise to Surface

Foam is a dispersion of a gas in a liquid, stabilized by surface active substances.

\[V \sim \frac{r^2}{\eta} \]

- \(V \) = Velocity of rise
- \(r \) = Bubble radius
- \(\eta \) = Viscosity of liquid
Mode of Action

Properties of a defoamer:

• Low Surface Tension

• Good spreading ability

• Insoluble / Incompatible in the surrounding medium

silicones, mineral oils and certain polymers fulfill these criteria's
Spreading of Defoamer

- Marking water surface with inert powder
- Adding one droplet of defoamer

→ Rapid spreading
Defoamer Selection

![Diagram showing the relationship between defoaming, foam stabilization, and compatibility/solubility.](image-url)

- Defoaming
- Optimum
- Defects
- Foam
- Foam stabilization
- compatible/soluble
- incompatible/insoluble
Mode of Action of Hydrophobic Particles

- Synergy between hydrophobic particles and defoamer oil
- Rough, structured particles are more efficient than ball shaped particles
- Destabilization of lamella through high hydrophobicity and dewetting of the particles
- Chemistry: hydrophobic silica, polyurea, waxes polyamides and metal salts
- Only used in water-borne systems
Defoamers - Air Release Additives

Defoamers
Act at the surface

Air Release Additives
Act in the resin

No clear differentiation!
Deaeration - Mode of action inside the liquid
Increasing speed of gas diffusion

Different mechanism compared to bubble rupture at the surface!

- Formation of microfoam after application
- Removal of surfactants and covering of the bubble surface by defoamer molecules
- Increased speed of gas diffusion into the liquid phase
 → Microfoam disappears
Incorporation / Emulsification of Defoamers
Droplet Size Distribution

- **Too incompatible poor emulsification:**
 - Strong defoaming
 - Poor substrate wetting
 - cratering

- **Good compatibility good emulsification:**
 - Strong defoaming
 - Good substrate wetting
 - no cratering

- **Too compatible over emulsification:**
 - Weak defoaming
 - Good substrate wetting
 - no cratering

Shear Force
Incorporation time

BYK
Additives & Instruments
Foam Prevention

Before adding a defoamer the possible reasons for foam stabilization should be eliminated:

- Optimization of production process
- Wetting of solid particles
- Minimize utilization of foam stabilizing components
- Adjusting application conditions (if possible)
Defoamer for Aqueous Systems
Defoamer Classes for Aqueous Systems

- Mineral oil defoamers
- Silicone defoamers
- Silicone-free polymeric defoamers
Composition of Mineral Oil Defoamers

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mineral oil</td>
<td>85 - 95</td>
</tr>
<tr>
<td>Hydrophobic particles</td>
<td>1 - 3</td>
</tr>
<tr>
<td>Emulsifier</td>
<td>3 - 6</td>
</tr>
<tr>
<td>Modified polysiloxanes</td>
<td>0.5 - 3</td>
</tr>
</tbody>
</table>
Mineral Oil Defoamers for Emulsion Paints and Plasters

<table>
<thead>
<tr>
<th></th>
<th>Interior paints</th>
<th>Industrial emulsions</th>
<th>Gloss and semigloss paints</th>
<th>Emulsion production</th>
<th>Emulsion type</th>
<th>Contains silicone</th>
</tr>
</thead>
<tbody>
<tr>
<td>BYK-035*</td>
<td>good</td>
<td></td>
<td>good</td>
<td>100%</td>
<td>100%</td>
<td>Yes</td>
</tr>
<tr>
<td>BYK-037*</td>
<td>good</td>
<td></td>
<td>good</td>
<td>w/o</td>
<td>100%</td>
<td>Yes</td>
</tr>
<tr>
<td>BYK-038*</td>
<td>good</td>
<td></td>
<td>excellent</td>
<td>100%</td>
<td>100%</td>
<td>Yes</td>
</tr>
<tr>
<td>BYK-039*</td>
<td>good</td>
<td></td>
<td>excellent</td>
<td>100%</td>
<td>100%</td>
<td>No</td>
</tr>
</tbody>
</table>

*Alkylphenol-ethoxylate-free
Defoamer Classes for Aqueous Systems

- Mineral oil defoamers
- Silicone defoamers
- Silicone-free polymeric defoamers
Composition of Silicone Oil Defoamer

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silicone Oil</td>
<td>5-90</td>
</tr>
<tr>
<td>Hydrophobic particles</td>
<td>1 - 3</td>
</tr>
<tr>
<td>Emulsifier</td>
<td>3 - 6</td>
</tr>
<tr>
<td>Polyglycol or Water</td>
<td>0-85</td>
</tr>
</tbody>
</table>
Polydimethylsiloxane

![Polydimethylsiloxane structure](image)

- **Not used in Aqueous Paint Systems**

<table>
<thead>
<tr>
<th>Property</th>
<th>Compatible Range</th>
<th>Incompatible Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leveling</td>
<td>2 - 30</td>
<td>45 - 230</td>
</tr>
<tr>
<td>Slip</td>
<td>380 - 1500</td>
<td>1800 - 2900</td>
</tr>
<tr>
<td>Defoaming</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hammertone</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Silicone Defoamers

Polyether: EO, PO, EO/PO
Silicone Defoamers for Emulsion Paints and Plasters

- Suitable
- Recommended

VOC-free
Low dosage (0.1 – 0.5%)
Suitable for PVC range between 30-85%
APEO-free
No “Fogging”

<table>
<thead>
<tr>
<th></th>
<th>Interior paints, Plasters</th>
<th>Gloss and semigloss paints</th>
<th>Sealers, transparent systems</th>
<th>Emulsion production</th>
<th>Solids [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>BYK-023</td>
<td>18.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BYK-1610</td>
<td>17.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BYK-1615</td>
<td>12.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Silicone Defoamers for Architectural and Wood Coatings

<table>
<thead>
<tr>
<th></th>
<th>Architectural coatings and Joinery</th>
<th>Wood and furniture coatings</th>
<th>Solids [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>BYK-1730</td>
<td>suitable</td>
<td>For pigmented high gloss systems, PVC 18-25</td>
<td>100</td>
</tr>
<tr>
<td>BYK-1770</td>
<td></td>
<td>Airless/Airmix</td>
<td>100</td>
</tr>
<tr>
<td>BYK-1780</td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>BYK-1785</td>
<td></td>
<td></td>
<td>30</td>
</tr>
</tbody>
</table>

suitable and *recommended*
Defoamer selection for waterborne systems
General overview

- Silicone defoamer with hydrophobic particles
- Silicone defoamer w/o hydrophobic particles

Shear Force

<table>
<thead>
<tr>
<th>Millbase</th>
<th>BYK-044</th>
<th>BYK-1730</th>
<th>BYK-017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Letdown</td>
<td>BYK-1780</td>
<td>BYK-021</td>
<td>BYK-018</td>
</tr>
<tr>
<td></td>
<td>BYK-1785</td>
<td>BYK-022</td>
<td>BYK-019</td>
</tr>
<tr>
<td>Post</td>
<td>BYK-094</td>
<td>BYK-094</td>
<td>BYK-1650</td>
</tr>
<tr>
<td>Addition</td>
<td>BYK-1770</td>
<td>BYK-023</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BYK-1610</td>
<td>BYK-024</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BYK-1615</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BYK-093</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BYK-028</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BYK-025</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Silicone Defoamers for Aqueous Systems

<table>
<thead>
<tr>
<th>Solids %</th>
<th>Hydrophobic Particles</th>
<th>Carrier/Solvent</th>
</tr>
</thead>
<tbody>
<tr>
<td>BYK-017</td>
<td>100</td>
<td>-</td>
</tr>
<tr>
<td>BYK-018</td>
<td>100</td>
<td>Polyglycol MW >1000, hydrophobic</td>
</tr>
<tr>
<td>BYK-019</td>
<td>60</td>
<td>Dipropylenglycol monomethylether</td>
</tr>
<tr>
<td>BYK-1719</td>
<td>100</td>
<td>-</td>
</tr>
<tr>
<td>BYK-021</td>
<td>100</td>
<td>Polyglycol MW >1000, hydrophobic</td>
</tr>
<tr>
<td>BYK-022</td>
<td>100</td>
<td>Polyglycol MW >1000, hydrophobic</td>
</tr>
<tr>
<td>BYK-023</td>
<td>18.5</td>
<td>Water/Emulsion</td>
</tr>
</tbody>
</table>

Polyether = PO
Silicone Defoamers for Aqueous Systems

<table>
<thead>
<tr>
<th>Solids %</th>
<th>Hydrophobic Particles</th>
<th>Carrier/Solvent</th>
</tr>
</thead>
<tbody>
<tr>
<td>BYK-024</td>
<td>100</td>
<td>Polyglycol MW <1000, hydrophilic/hydrophobic: emulsifiable</td>
</tr>
<tr>
<td>BYK-1650</td>
<td>27</td>
<td>Water/Emulsion</td>
</tr>
<tr>
<td>BYK-025</td>
<td>20</td>
<td>Dipropylenglycol-monomethylether</td>
</tr>
<tr>
<td>BYK-028</td>
<td>100</td>
<td>Polyglycol MW >2000, hydrophilic</td>
</tr>
<tr>
<td>BYK-044</td>
<td>57</td>
<td>Water/Emulsion</td>
</tr>
<tr>
<td>BYK-093</td>
<td>100</td>
<td>Polyglycol MW >2000, hydrophilic</td>
</tr>
<tr>
<td>BYK-094</td>
<td>100</td>
<td>Polyglycol MW <1000, hydrophilic/hydrophobic</td>
</tr>
</tbody>
</table>

Polyether = EO or EO/PO
Defoamer Classes for Aqueous Systems

• Mineral oil defoamers
• Silicone defoamers
• Silicone-free polymeric defoamers
Silicone- and Mineraloil-free Polymeric Defoamers for Water-Borne Systems

Polymeric defoamers are chemically stable in a pH range from 3-12

<table>
<thead>
<tr>
<th></th>
<th>Emulsion Paints and Plaster PVC 30-85</th>
<th>Alkyd-emulsions</th>
<th>Emulsion-polymerisation process</th>
<th>Printing Inks and OPV</th>
<th>Acrylic/Melamine Pigmented</th>
<th>Dosage</th>
</tr>
</thead>
<tbody>
<tr>
<td>BYK-012</td>
<td>suitable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.05 - 0.5%</td>
</tr>
<tr>
<td>BYK-014</td>
<td>suitable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.05 - 0.5%</td>
</tr>
<tr>
<td>BYK-016</td>
<td>suitable</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 - 2%</td>
</tr>
<tr>
<td>BYK-1640</td>
<td>suitable</td>
<td></td>
<td>recommended</td>
<td></td>
<td></td>
<td>0.05 - 0.5%</td>
</tr>
<tr>
<td>BYK-1740</td>
<td>suitable</td>
<td></td>
<td>recommended</td>
<td></td>
<td></td>
<td>0.2-0.5%</td>
</tr>
</tbody>
</table>

BYK-1740: Green Defoamer Based on Eco-friendly and Sustainable Raw Materials

BYK-016: FDA § 175.105, 175.300, 175.320, 176.200, 176.21 approved

BYK-1640: Polymer-Emulsion, Polyamid particles; FDA § 175.105, 175.300 approved
Polymeric defoamers are chemically stable in a pH range from 3-12

<table>
<thead>
<tr>
<th></th>
<th>2K PU</th>
<th>2K Epoxy</th>
<th>Alkyd Emulsion</th>
<th>Water soluble Alkyd resins</th>
<th>PU Emulsion</th>
<th>Water-Based UV</th>
<th>Dosage</th>
</tr>
</thead>
<tbody>
<tr>
<td>BYK-011</td>
<td>✅</td>
<td>✅</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1-2%</td>
</tr>
<tr>
<td>BYK-015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.2 - 1%</td>
</tr>
<tr>
<td>BYK-1710</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.1 – 0.5%</td>
</tr>
<tr>
<td>BYK-1711</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.1 – 0.5%</td>
</tr>
</tbody>
</table>

- **Suitable**
- **Recommended**

BYK-015: Anti Popping additive with defoaming properties

BYK-1710: VOC-free. AGBB Conform

Polymeric-Defoamers for Waterborne Systems

*FDA-approved, specifically for printing inks and paper coatings
Silicone-free and Mineral Oil Free Anti Popping Additives for Aqueous Systems

- Increase the popping limit of water borne paints
- No influence on recoat ability
- Reduce the crater sensitivity
- Can improve the levelling

<table>
<thead>
<tr>
<th></th>
<th>2K-PU</th>
<th>Acrylate/ Melamine pigmented</th>
<th>Alkyd emulsions</th>
<th>HAPS-free</th>
<th>APEO-free</th>
<th>Dosage</th>
</tr>
</thead>
<tbody>
<tr>
<td>BYKETOL-WS</td>
<td></td>
<td></td>
<td></td>
<td>No</td>
<td>No</td>
<td>0,5 – 3,0%</td>
</tr>
<tr>
<td>BYKETOL-AQ</td>
<td>Yes</td>
<td></td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>0,5 – 3,0%</td>
</tr>
</tbody>
</table>

- good
- excellent
Defoamers for Solvent-borne and Solvent-free Systems

- Silicone defoamers
- Silicone-free polymer defoamers
- Silicone/polymer defoamers
- Silicones and acrylates with defoaming properties
Defoamer Selection

Defoaming

Optimum

Defects

compatible/soluble

incompatible/insoluble

Foam

Foam stabilization
Influence of Compatibility
One Defoamer in Three Different Solvents

Left: too incompatible
→ turbid

Middle: too compatible
→ foam stabilization

Right: good balance
→ clear, no foam
Defoamer Selection for Solvent borne and Solvent free systems
General Overview

- Silicone defoamer: BYK-065, BYK-A535, BYK-055, BYK-088, BYK-072
- Silicone/Polymer defoamer: BYK-051, BYK-052, BYK-054, BYK-057, BYK-A535, BYK-1791, BYK-1798
- Silicone free Polymer defoamer: BYK-066N, BYK-081, BYK-1790, BYK-077, BYK-085, BYK-070, BYK-141

The chart illustrates the selection of defoamers based on shear force and time of incorporation.
Surface Additives with Defoaming Properties

<table>
<thead>
<tr>
<th>Silicons</th>
<th>Acrylates</th>
</tr>
</thead>
<tbody>
<tr>
<td>• BYK-077</td>
<td>• BYK-354</td>
</tr>
<tr>
<td>• BYK-322</td>
<td>• BYK-352</td>
</tr>
<tr>
<td>• BYK-323</td>
<td>• BYK-392</td>
</tr>
<tr>
<td>• BYK-320</td>
<td>• BYK-359</td>
</tr>
</tbody>
</table>
Test Methods
Defoamer Test Methods

• Shaking
• Stirring-in air by dissolver
• Introducing air by pump
• Rolling with porous foam roller
• Brush application
• Measurement of density
Defoamer Test Methods - Shaking
Defoamer Test Methods - Stirring-in of Air by Dissolver
Defoamer Test Methods - Rolling With Foam Roller
Defoamer Test Methods - Brush Application
Defoaming: Influencing Factors

- Point of addition
- Shear forces needed for incorporation
- Dosage
- Duration of incorporation
- Defoamer selection
Summary

• Foam prevention
 1. Production
 2. Application

• Correct additive selection
 1. Wetting and dispersing additives
 2. Surface additives

• Usage of defoamers
ANTI-TERRA®, BYK®, BYK®-DYNWET®, BYK®-SILCLEAN®,
BYKANOL®, BYKETOL®, BYKOPLAST®, BYKUMEN®, DISPERBYK®,
DISPERPLAST®, LACTIMON®, NANONYK®, SILBYK® and
VISCOBYK® are registered trademarks of BYK-Chemie.
AQUACER®, AQUAFLOUR®, AQUAMAT®, CERACOL®, CERAFAK®,
CERAFLOUR®, CERAMAT®, CERATIX® and MINERPOL® are
registered trademarks of BYK-Cera.

This information is given to the best of our knowledge. Because of the
multitude of formulations, production, and application conditions, all the
above mentioned statements have to be adjusted to the circumstances of
the processor.
No liabilities, including those for patent rights, can be derived from this
fact for individual cases.